A Note on the tangent bundle

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication on the Tangent Bundle

Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Gromoll type metrics on the tangent bundle

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes the Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. We found conditions under which T (M) is almost Kählerian, locally conformal Kählerian or Kählerian or wh...

متن کامل

A Tangent Bundle on Diffeological Spaces

We define a subcategory of the category of diffeological spaces, which contains smooth manifolds, the diffeomorphism subgroups and its coadjoint orbits. In these spaces we construct a tangent bundle, vector fields and a de Rham cohomology.

متن کامل

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Trends in Mathematical Science

سال: 2018

ISSN: 2147-5520

DOI: 10.20852/ntmsci.2018.243